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Abstract— This paper presents a model predictive control
(MPC) approach for robot navigation in crowded environments.
Our proposed approach couples agent motion prediction and
planning to avoid the freezing robot problem while capturing
multi-agent social interactions by utilizing a state-of-the-art
trajectory prediction model i.e., social long short term memory
model (Social-LSTM). Leveraging the output of Social-LSTM
for the prediction of future trajectories of pedestrians at each
time step given the robot’s possible actions, our framework
computes the optimal control action for the robot to navigate
among pedestrians. We demonstrate the effectiveness of our
proposed approach in multiple scenarios of simulated crowd
navigation and compare it against several state-of-the-art rein-
forcement learning-based methods.

I. INTRODUCTION

Robot navigation in environments with humans, also
known as crowd navigation or social navigation, remains
a challenging problem due to the uncertainty of human
intentions and the reciprocal interactions between the robot’s
and humans’ motions. As a result, crowd navigation has
received increasing attention over the last few decades, and a
variety of approaches have been proposed to date to address
this problem [1]. Current research on robot navigation can
be divided into three categories: 1) Reactive-based [2]; 2)
Reinforcement Learning (RL)-based; and 3) Optimization-
based. Modern approaches have sought to solve the freezing
robot problem [3] by coupling the prediction of humans’
future trajectories with robot planning in an interaction-
aware manner. Several studies have utilized RL framework
with deep neural networks - e.g., collision avoidance with
deep RL (CADRL) [4], LSTM-RL [5] for handling arbitrary
numbers of agents, SARL [6] for obtaining the collective
impact of crowd through a self-attention mechanism, and
recurrent graph neural network with attention mechanisms
[7]. All of these efforts seek to train navigation policies for
a single robot that maximize a specially designed reward
function while minimizing the possibility of collisions with
other agents. On the other hand, optimization-based methods
such as model predictive control (MPC) can be typically
used to optimize the behavior of a robot over a finite control
horizon given certain prediction models of human trajecto-
ries. Brito et al. [8] combined RL with an optimization-
based method in which a learned policy provides long-
term guidance to a local MPC planner. Several other studies
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have recently proposed MPC with various human prediction
models, including constant velocity [9], intention-enhanced
optimal reciprocal collision avoidance (iORCA) [10], social
generative adversarial networks (GAN) [11], long short term
memory (LSTM) [12], and Kalman filters [13]. Recently,
machine learning models such as Social-LSTM [14], Social-
GAN [15], Social-NCE [16], sparse Gaussian processes [17]
have shown better performance in human trajectory predic-
tion compared to solely domain knowledge-based models.
Machine learning prediction models can thus be combined
with MPC to enhance the planning performance.

In this paper, we present our framework for robot nav-
igation in crowded environments in which we integrate
a machine-learning based trajectory prediction model i.e,
Social-LSTM [14] into an optimization-based planning in
an MPC fashion. We couple the prediction and planning
to avoid freezing robot problem while capturing multi-agent
social interactions. In our framework, we leverage a Social-
LSTM model trained on a real human-trajectory data-set to
predict the future behavior of human pedestrians and their
interactions with the robot’s possible actions. The solution of
MPC framework coupled with the Social-LSTM model is the
optimal control action for the robot to navigate among the
crowd. To numerically solve the MPC problem coupled with
the Social-LSTM , we utilize an iterative best-response (IBR)
approach [18] inspired by the Nash equilibrium [19]. At
each time-step, the method sequentially computes the neural
network prediction and solves for the optimal control action
of the robot. The performance of the proposed method is
evaluated in simulations with different scenarios in compari-
son with baseline RL techniques to demonstrate the potency
and the domain-invariant nature of the MPC approach.

The remainder of the paper is organized as follows. In
Section II, we present our problem statement for crowd
navigation, while the details of proposed control method
is given in Section III. We show some simulation results
in multiple scenarios with analysis in Section IV before
concluding the paper in Section V.

II. PROBLEM STATEMENT

We consider an environment W ⊂ R2 where a single
robot navigates among N ∈ N human pedestrians, as can
be illustrated in Fig. 1. Let 0 be the index of the robot,
while H = {1, . . . , N} denotes the set of human pedestrians
in the environment.

At time step k ∈ N, let s0,k = [sx0,k, s
y
0,k]

⊤ ∈ W , v0,k =

[vx0,k, v
y
0,k]

⊤ ∈ R2, and a0,k = [ax0,k, a
y
0,k]

⊤ ∈ R2 be the



Fig. 1: An example of robot navigating in a crowded envi-
ronment.

vectors corresponding to position, velocity, and acceleration
of the robot in Cartesian coordinates, respectively, where
each vector consists of two components for x− and y−
axis. Additionally, the robot needs to navigate from an
initial position sorig0 := [sx0,0, s

y
0,0]

⊤ called origin to a final
goal position sgoal0 ∈ W while avoiding collisions and any
potential discomfort to other pedestrians i ∈ H. Discomfort
is a social conformity metric and is defined to be present if
the robot’s projected path intersects with a human’s predicted
path [20]. Let x⊤

0,k = [s⊤0,k,v
⊤
0,k] and u0,k = a0,k be the

state vector and control action for the robot at time step k,
respectively. Likewise, let si,k = [sxi,k, s

y
i,k]

⊤ ∈ W be the
position of human i ∈ H at time step k in a vector form.

Assumption 1. We assume that each pedestrian’s real-time
position can be measured by either onboard sensors or
obtained through a positioning system.

III. ROBOT NAVIGATION WITH MODEL PREDICTIVE
CONTROL

Our framework consists of two main components: (1) a
Social-LSTM model [14] which learns the social interaction
and predicts the future behavior of human pedestrians, and
(2) an MPC to find the optimal control action for the robot.

A. Human Motion Prediction using Social-LSTM

Let t ∈ N be the current time step, H ∈ Z+ is the
control/prediction horizon length (with both equal to each
other), and It = {t, t+1, . . . , t+H − 1} be the set of time
steps in the control horizon. The human prediction model
aims at predicting the trajectories of human pedestrians over
a prediction horizon of length H given the current and
past observations over L ∈ Z+ previous time steps of all
agents’ trajectories including the robot’s. Social-LSTM was
developed in [14] for jointly predicting multi-step trajectory
of multiple agents. Social-LSTM uses a separate LSTM
network for each trajectory, then the LSTMs are connected
to each other through a social pooling (S-pooling) layer.

We consider recursive prediction for the pedestrians’ po-
sitions over the next control horizon using the single-step

Social-LSTM model denoted by ϕ(·) : R2(N+1)(L) → R2N

as follows: [21]

s1:N,k+1 = ϕ(s0:N,k−L+1:k), ∀k ∈ It. (1)

In (1), at each time step, predicted positions of pedestrians
computed from the previous time steps are used recursively
as the inputs of the Social-LSTM model. Furthermore, the
Social-LSTM-based predicted positions of the robot are
disregarded as they are computed using the solution of the
MPC problem. For further details on the architecture design
and implementation of Social-LSTM, the readers are referred
to [14]. It should be noted that while in this work we
employ the Social-LSTM model [14] as a human prediction
model, our framework can be integrated with alternative deep
learning models such as [15], [16], [22].

B. Model Predictive Control for Crowd Navigation
In this section, we formulate an MPC problem to navigate

the robots while taking into account the trajectory prediction
model of surrounding pedestrians. For ease of notation,
henceforth, we use u0, x0, and si, ∀i ∈ H instead of
u0,t:t+H−1, x0,t+1:t+H and si,t+1:t+H , respectively, to de-
note the vectors concatenating the variables over the control
horizon.

The system dynamics of the robot for all k ∈ It is given
by the following discrete-time double-integrator model

s0,k+1 = s0,k + τv0,k +
1

2
τ2a0,k,

v0,k+1 = v0,k + τa0,k,
(2)

where τ ∈ R+ is the sampling time period.
The speed and control input of the robot at each time step

k are bounded by:

−vmax ≤ vx0,k, v
y
0,k ≤ vmax,

−amax ≤ ax0,k, a
y
0,k ≤ amax,

(3)

where vmax ∈ R+ and amax ∈ R+ are the maximum velocity
and maximum acceleration, respectively. We formulate the
objective function in MPC by a weighted sum of multiple
features. In particular, to navigate the robot to the goal, we
include tracking minimization to the desired trajectory

Jgoal(s0) =

t+H−1∑
k=t

(s0,k+1 − sref0,k+1)
⊤(s0,k+1 − sref0,k+1),

(4)
where sref0,k+1 is the desired position at time k + 1. We
compute the desired trajectory based on the straight line to
the robot’s goal as follows

sref0,k+1=sref0,k +min
{
τvmax,

∥∥∥sgoal0 − sref0,k

∥∥∥} sgoal0 − sref0,t∥∥∥sgoal0 − sref0,t

∥∥∥ ,
(5)

for k ∈ It and sref0,t = s0,t. In addition, we minimize the
acceleration and jerk rates of the robot’s motion by the
following objectives

Jacce(u0) =

t+H−1∑
k=t

u⊤
0,ku0,k, (6)



and

J jerk(u0) =

t+H−1∑
k=t

(u0,k − u0,k−1)
⊤(u0,k − u0,k−1). (7)

To encourage safety between the robot and the pedestrians,
we impose the following constraint that the distance between
the robot and each pedestrian i ∈ H be greater than a safe
speed-dependent distance

∥s0,k+1 − si,k+1∥22 ≥ d2min + ρ ∥v0,k+1∥22 , (8)

where dmin ∈ R+ is the minimum allowed distance and
ρ ∈ R+ is a scaling factor. The above constraint implies
that the robot should keep further distances to the humans
while moving with higher speed. We include the collision
avoidance constraint as a soft constraint in the objective
function by using a smoothed max penalty function as
follows

Jcoll(x0, si) =
t+H−1∑
k=t

smax
(
d2min + ρ ∥v0,k+1∥22 −

∥s0,k+1 − si,k+1∥22
)
,

(9)

where the smoothed max penalty function is defined as

smax(x) =
1

µ
log

(
exp(µx) + 1

)
,

with µ ∈ R+ as a parameter that manipulates the smoothness
of the penalty function.

The MPC objective function can be given by a weighted
sum of those features as follows

J(u0,x0, s1:N ) = ωgoalJgoal(x0) + ωacceJacce(u0)

+ ωjerkJ jerk(u0)+
∑
i∈H

ωcollJcoll(x0, si),

(10)
where ωgoal, ωacce, ωjerk, and ωcoll ∈ R+ are positive
weights. Note that the penalty weight ωcoll chosen should
be sufficiently large. Hence, the MPC formulation for each
time step t is formulated as follows

minimize
u0,x0

J(u0,x0, s1:N ), (11a)

subject to: (1), (2), and (3), ∀k ∈ It, (11b)
given: s0:N,t−L+1:t. (11c)

C. Iterative Best-Response Implementation

To solve the MPC problem (11) coupled with the
Social-LSTM model, one can use gradient-based methods
that requires gradient computation by back-propagating the
LSTM’s gradients [21]. However, due to the complexity of
the neural network model, solving the MPC problem would
be computationally intractable. Therefore, in this section,
we present an iterative best-response approach [18], [23]
inspired by the Nash equilibrium which at each time-step
sequentially computes the neural network prediction and
solves the MPC problem, for several iterations or until
convergence. We use superscript j ∈ N in u

(j)
0 and x

(j)
0

to denote the results at the j’th iteration. If the algorithm

converges, the resulting equilibrium is Nash equilibrium [18],
[23]. The iterative best-response algorithm for solving MPC
problem with the recursive prediction model is detailed in
Algorithm 1. At t = 0, we initialize u

(0)
0 = 0, and at every

time-step t > 1, the optimization is warm-started with the
solution of the previous time-step.

Algorithm 1 Iterative Best-Response MPC Implementation

Require: t, H , jmax ∈ N, ϵ ∈ R+, u
(0)
0 := u

(0)
0,t:t+H−1,

s
(0)
0 := s

(0)
0,t+1:t+H , s(0)1:N,t−L:t

1: for j = 1, 2, . . . , jmax do
2: Predict s

(j)
1:N := s

(j)
1:N,t+1:t+H recursively by (1)

given s
(j−1)
0 .

3: Solve (11) given s
(j)
1:N to obtain u

(j)
0 and x

(j)
0 .

4: if
∥∥∥u(j)

0 − u
(j−1)
0

∥∥∥ ≤ ϵ then

5: return u
(j)
0

6: end if
7: end for
8: return u

(jmax)
0

IV. SIMULATION RESULTS
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Fig. 2: Trajectories of the robot (proposed framework) and
human pedestrians at several time steps in a circle crossing
simulation with the robot visible to the humans. The desti-
nation of the robot is marked by a red star.

The planning algorithm was implemented in Python
in which CasADi [24] and the built-in IPOPT solver
[25] are used for formulating and solving the MPC
problem, respectively. The parameters of MPC were
chosen as: τ = 0.4 s, H = 8, L = 8, vmax = 1.0m/s,
amax = 2.0m/s2, dmin = 0.8m, ρ = 0.5 s2, µ = 30,
ωgoal = 10.0, ωacce = 10−1, ωjerk = 10−1, ωcoll = 107.

For social navigation simulations, we used the CrowdNav
environment1 [6] in which the human pedestrians are simu-



Success Rate (%) Collision Rate (%)

Method ↓ # Humans 5 6 7 8 5 6 7 8
Scenario C S C S C S C S C S C S C S C S

MPC 98.9 100 98.3 99.3 98.5 98.3 97.6 98.6 1.1 0.0 1.5 0.5 1.5 1.1 2.3 1.0
CADRL 98.9 32.1 97.6 32.4 93.8 29.5 94.0 28.9 0.1 0.2 0.0 0.3 0.0 0.3 0.0 0.6
SARL 96.8 47.5 97.4 41.3 97.0 35.5 96.7 33.0 0.0 0.0 0.1 0.0 0.2 0.0 0.2 0.0

TABLE I: Statistical results in Circle and Square Crossing Scenarios - Success and Collision Rates

Discomfort Rate (%) Average Travel Time (s)

Method ↓ # Humans 5 6 7 8 5 6 7 8
Scenario C S C S C S C S C S C S C S C S

MPC 0.9 0.9 0.4 0.6 1.4 1.3 0.8 1.2 13.1 11.6 13.6 11.7 14.2 12.0 14.8 12.3
CADRL 1.4 4.3 1.6 4.7 1.0 4.9 2.1 6.4 14.0 16.0 14.4 16.0 14.9 16.1 15.4 16.8
SARL 0.6 1.1 0.8 1.4 2.2 1.1 3.1 1.3 13.8 14.9 14.0 15.3 14.3 15.8 14.7 16.2

TABLE II: Statistical results in Circle and Square Crossing Scenarios - Discomfort Rates and Average Travel Time

lated using ORCA [2]. We utilize Trajnet++ benchmark2 [22]
for training Social-LSTM models using the ETH dataset [26].
We demonstrate the effectiveness of the proposed method by
the trajectories of the robot and human pedestrians in a circle
crossing simulation with 6 human pedestrians in Fig. 2. As
can be seen from the figure, the robot is able to navigate
among the humans and reach the goal in 15.2 s without any
collisions. The robot is visible to the humans during motion
to ensure that the interactive behaviors are captured by the
prediction module.

To further validate the performance of the proposed
method in comparison with different navigation algorithms,
we collect and compare the following metrics:

• Success rate: the percentage of simulations in which
all agents reach their individual destinations.

• Collision rate: the percentage of simulations that the
minimum distance between the robot and the pedestri-
ans is less than 0.8m (violation of personal space).

• Discomfort rate: the percentage of simulations that
the robot’s projected path intersects with a pedestrian’s
projected path [20]. The projected path is defined as a
line segment from the current position along with the
direction of the velocity and the length proportional to
the speed.

• Average travel time: Time to the destination in seconds
(for the simulations with success).

Among the four metrics, the success rate and average time
to the destination describe the path quality of the navigation
algorithms. On the other hand, collision rate and discomfort
rate are related to social conformity [20]. If the simulation
reports neither a success nor a collision, it means a timeout
has occurred wherein the robot has not been able to traverse
to its destination. We compare our proposed MPC with two
different RL algorithms including CADRL [4] and SARL
[6]. This evaluation was based on 8000 simulations with
varying numbers of human agents and randomized initial
conditions. Both RL algorithms are trained using the circle-

1https://github.com/vita-epfl/CrowdNav
2https://github.com/vita-epfl/

trajnetplusplusbaselines

crossing scenario. The statistical results are shown in tables
I and II.

Overall, the performance of MPC and RL algorithms in
circle crossing simulations are highly comparable. Unlike
the RL algorithms, the control policy in the proposed MPC
formulation does not need any pre-training. Furthermore, RL
algorithms are highly susceptible to domain shift. In this set
of evaluations, they have been trained in the circle-crossing
scenario but tested in both the circle-crossing and a square-
crossing scenario. The success rate of RL algorithms is com-
parable to that of the MPC in the circle-crossing scenario, but
drops dramatically in the square-crossing environment. The
simulations don’t show collision but report a high timeout
rate, indicating the incapability of the policies to generate
a feasible control path. This clearly illustrates the training
domain-dependent nature of the RL techniques.

The CADRL policy encounters growing discomfort rates
with increasing crowd densities. MPC on the other hand,
shows a lower discomfort rate, which implies MPC approach
can cause less discomfort to the human pedestrians. We
also observe higher travel times for the RL techniques.
In addition, the MPC approach presents significantly lower
acceleration and jerk rates, which indicates more natural
motion of the robot. However, we have chosen not to include
those comparison results in this manuscript since it would
be unfair to compare against RL techniques on metrics that
don’t account for them in their respective control design
approaches.

V. CONCLUSIONS

This work presented a control method for navigating a
robot in crowded environments. The control method com-
bines MPC and a human trajectory prediction model based
on Social-LSTM. We conducted extensive simulations to
evaluate the performance of the proposed methods in com-
parison with RL algorithms. Our future work will focus
on an extension of the control framework dealing with
multiple robots navigating in a coordinated manner through
crowds of humans. We also want to examine diversity in
human behavior and introduce more sociability metrics in our
evaluation to lower the gap between simulation and reality.

https://github.com/vita-epfl/CrowdNav
https://github.com/vita-epfl/trajnetplusplusbaselines
https://github.com/vita-epfl/trajnetplusplusbaselines
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